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Array training in a categorization task

Donald Homa, Derek Powell, and Ryan Ferguson

Department of Psychology, Arizona State University, Tempe, AZ, USA

Two components of categorization, within-category commonalities and between-category distinctive-
ness, were investigated in a categorization task. Subjects learned three prototype categories composed of
moderately high distortions, by observing arrays containing patterns that belonged either to a common
prototype category or to three different categories; a third group learned patterns presented one at a
time, mirroring the standard paradigm. Following 6 learning blocks, subjects transferred to old patterns
and new patterns at low-, medium-, and high-level distortions of the category prototype. The results
showed that array training facilitated learning, especially when patterns in the array belonged to the
same category. Transfer results showed a strong gradient effect across pattern distortion level for all con-
ditions, with the highest performance obtained following array training on different category patterns
and worst in the control condition. Interestingly, the old training patterns were classified worse than
new low and no better than medium distortions. Neither this ordering nor the steepness of the gradient
across prototype similarity for each condition could be predicted by the generalized context model.
A prototype model better captured the steep gradient and ordinal pattern of results, although the
overall fits were only slightly better than the exemplar model. The crucial role played by category
commonalities and distinctiveness on categorical representations is addressed.

Keywords: Categories; Concepts; Abstraction; Modelling; Array.

The vast majority of studies on human categoriz-
ation teach concepts by example, rather than defi-
nition, and typically by the presentation of the
instances one at a time. This paradigm, which has
changed little since the seminal publication of
Hull’s (1920) monograph, has proved to be pro-
ductive—variables that shape categories have been
identified (e.g., Homa, 1984), and a myriad of
formal, quantitative models have been developed
to capture these phenomena (e.g., Busemeyer &
Diederich, 2010). For example, variables such as
category size (the number of instances used to
define a category), number of categories to be
learned, category similarity, pattern distortion,
and instance frequency, when manipulated in the

learning phase, can be shown to dramatically
affect subsequent transfer. This supports the view
that concepts are dynamically modified by the
kinds of experiences that define them. A major
concern has been the development of formal, quan-
titative models that capture the resulting database.

The present study departs from the standard
paradigm by varying how many instances, and of
what type, occurred on a typical learning trial.
The learning phase was modified to include the
simultaneous presentation of a subset of the train-
ing patterns on each trial. In addition, the simul-
taneous presentation was further divided into two
conditions. In one condition, the subset of
instances contained members from the same
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category. In another condition, the subset of
instances contained instances that belonged to the
three different categories. Therefore, in the array-
same condition, the subject was able to inspect
three patterns from the same category, which
afforded the obvious advantage of noting what
these instances had in common. In the array-differ-
ent condition, the subject could note how the three
categories differ from each other, thereby high-
lighting category distinctions. Comparison
between these two methods was contrasted with
the standard condition, here called the sequential
condition, in which the same patterns were pre-
sented in learning but one at a time.

The rationale for this modification borrows
from two earlier theories of categorization,
Gibson’s distinctive feature theory (Gibson &
Gibson, 1955) and the prototype abstraction
theory of Posner and Keele (1968, 1970).
According to distinctive feature theory, categories
are learned by the discovery of features that
permit discrimination of one category from
another. According to the original prototype
theory of Posner and Keele, categories become
defined by identification of the features or com-
ponents common to the category. This latter per-
spective mirrors the view of James (1890) that a
concept becomes apparent by abstracting the invar-
iant component from the changing contexts in
which the object appears. An attempt to integrate
the distinctive features and prototype views was
provided by Homa and Chambliss (1975). These
authors manipulated both category size and
number of categories to be learned, followed by a
common transfer test. Variations in category size
should selectively influence identification of what
is common to a category, whereas number of cat-
egories to be initially learned in acquisition should
aid in the isolation of distinctive features. Subjects
initially learned two, four, or six categories, where
each category was defined by either three or six
instances. The results showed that each variable
differentially affected later transfer, with the
caveat that these variables also interacted; category
size became important only when more than two
categories had to be discriminated. The results
were explained by a qualitative feature model in

which category experience helped to isolate features
that were common, distinctive, and idiosyncratic,
with the variables of category size and number of
categories to be discriminated functioning to
isolate the various feature types.

In the present study, the presentation of an array
containing instances from the same category was
hypothesized to facilitate both learning and later
transfer, relative to the standard sequential presen-
tation, since commonalities to a category should be
readily promoted by this manipulation. That is,
simultaneous viewing of three instances reduces
memory demands, relative to sequential presen-
tation, since commonalities in the latter require
accurate retention of previous instances. The simul-
taneous presentation of instances from different
categories was hypothesized to be facilitative as
well, because simultaneous viewing of three pat-
terns from different categories should better
promote knowledge of what makes the categories
different relative to sequential presentation. We
also anticipated that the array-same-category con-
dition would result in the most rapid learning of
all, since distinctive training cannot become effec-
tive until these features are identified as such and
also common to that category.

The present study shares similarities with the
free sorting task (e.g., Ahn & Medin, 1992;
Regehr & Brooks, 1995). For example, in the
Regehr and Brooks (1995) experiment, the entire
ensemble of stimuli was simultaneously available,
and subjects were instructed to sort the stimuli
into two “natural” groups. Most subjects formed
groups by seeking out an invariant component,
suggesting that subjects have a preference for
single-dimension sorts. A similar bias was also
obtained by Ashby, Queller, and Berretty (1999)
who explored the learning of concepts in the
absence of feedback. More recently, Pothos and
Close (2008) demonstrated, in a free sorting task,
that classifications using one versus two dimensions
could be predicted by the optimal set of similarity
measurements across the entire stimulus space.
However, differences between the present para-
digm and the free sorting task are worth noting:
(a) Subjects in the present task only saw random
subsets of three patterns from the full ensemble of
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learning patterns; (b) a learning phase was used in
which feedback was provided that was consistent
with prototype constraints; and (c) whatever com-
monalities existed within patterns of the same cat-
egory in the present study were based on similarity
of patterns or pattern components rather than
invariant components. Nonetheless, these studies
support the hypothesis that subjects readily search
for commonalities among patterns, an outcome
that should favour the learning of arrays containing
patterns from the same category as opposed to
arrays containing patterns from different categories.

Subjects viewed 27 patterns on each learning
block, nine from each of three categories. In the
sequential control condition, this required, of
course, 27 trials per training block. In the simul-
taneous conditions, the 27 different patterns were
presented in nine arrays per block. On subsequent
learning blocks, the subsets of three were random-
ized, resulting in unique arrays on each training
block. Following six learning blocks, all subjects
were transferred to a common set of patterns,
including old, new, and prototype patterns. Each
subject made a double response to each transfer
pattern, first judging whether the pattern was old
or new and then identifying to which category the
pattern belonged.

The transfer test also included random patterns
—patterns generated from prototypes different
from those used in learning and therefore unrelated
to the categories in the learning phase. On the
transfer test, the subject was given the option to
assign a pattern to one of the three learned cat-
egories or to a “junk” category (a manipulation suc-
cessfully used previously, e.g., Homa, Burruel, &
Field, 1987; Homa, Hout, Milliken, & Milliken,
2011). The rationale for including random patterns
in the transfer phase was because array training with
patterns from different categories was hypothesized
to best highlight category distinctiveness. As a con-
sequence, we anticipated that array training with
different category patterns would result in the

highest correct assignment of random patterns
into the junk category.

Finally, the transfer results lend themselves to
formal modelling. We selected, as training patterns,
stimuli that were moderately high-level distortions
of the prototype. These moderately high-level dis-
tortion patterns—forms composed of nine con-
nected dots in a 50× 50 grid—have the property
that they are neither very similar to each other
nor to other category patterns, regardless of their
similarity relationship to the category prototype
(Homa, 1978; Homa, Proulx, & Blair, 2008), a
property verified by the multidimensional scaling
analyses presented later. Because transfer patterns
included new instances that were low, medium,
and high distortions of each training prototype,
prototype models of classification (e.g., Homa
et al., 2008; Smith & Minda, 2002) must predict
a steep gradient across old–new prototype simi-
larity, regardless of condition. In contrast, new
transfer patterns had a weak and inconsistent simi-
larity relationship to the old (training) patterns.
The upshot of this, detailed later, is that exem-
plar-based models of classification (e.g., Nosofsky,
1988; Nosofsky & Johansen, 2000) must predict a
diminished gradient across old–new prototype
similarity for each condition.1

Method

Participants
The participants were 74 undergraduate students
enrolled in an introductory psychology course at
Arizona State University who received class credit
for participation. Participants were randomly
assigned into the three learning conditions, with
the sole constraint that each condition had approxi-
mately the same proportion of males and females.
The subjects were between 18 and 24 years of
age, with a median age of 19. The data for subjects
were deleted for showing no learning improvement

1 Fine-grained modelling of whether array training sharpened or broadened category boundaries, as might be revealed by changes in

dimensional weights, are precluded with these stimuli, at least at the current time. The reason is that the functional dimensions of ill-

defined patterns are obscure (Neisser, 1967). The overriding advantage of our stimuli, detailed in the discussion, is that they permit

manipulation of pairwise similarities not possible with simpler stimuli composed of well-defined dimensions.
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across the six training blocks, two from the sequen-
tial (control) condition, and four each from the
same-category and different-category array con-
ditions. All analyses were based on 64 participants,
21 in the sequential and same-category array con-
dition, and 22 in the different-category array
condition.2

Materials and apparatus
Stimuli were connected-dot patterns formed from
nine dots arranged in a 50× 50 matrix, similar to
those used in previous research (Homa, 1978).
Initially, three patterns were randomly generated
to serve as the category prototypes for the three cat-
egories. The exemplars for each category were
formed from distortions of these three prototype
patterns, based on statistical decision rules. All
training patterns were moderate–high distortions
of the category prototype, with an average vertex
displacement of 4.03 units/vertex from its proto-
type and a range of 3.60–4.25. During the learning
phase, each category was represented by nine differ-
ent exemplars. These 27 patterns were each dis-
played once during each learning block. The
learning phase consisted of six learning blocks.

For each category, 45 additional new category
patterns were generated for use in the transfer
phase. Of these, five were low-level distortions,
five were medium distortions, and five were high
distortions for each of the three categories. Low-
level distortions had an average distance moved
per vertex of 1.20 units; the medium- and high-
level distortions had an average distance moved
per vertex of 2.80 and 4.60 units, respectively
(Posner, Goldsmith, & Welton, 1967).3 In
general, the low-level distortions look similar to
each other, whereas the high-level distortions
share little obvious similarity to each other.
Fifteen additional “junk” patterns were created
based on distortions from other prototypes and
had an average distance moved per vertex to any

of the learning patterns of 10–15 units. The trans-
fer set also contained each category prototype,
resulting in a transfer set of 90 different patterns.

Stimulus presentation and data recording were
done using E-Prime v1.2 software. Stimuli, feed-
back, and instructions were presented on the
screen, while participants made their responses
using the keyboard. The stimuli were generated at
a resolution of 300× 300 pixels and were presented
on a display with a resolution of 1,024× 768 pixels.
Feedback was displayed as text in black, 32-point
Arial font. Stimuli were dark blue (RGB 000, 000,
128) with lines 1 pixel wide. Both feedback and
stimuli were displayed on a pure white background.

Procedure
Participants were seated at a computer workstation
and were first given a brief set of instructions

Table 1. Mean objective distance and estimated multidimensional

distances for selected pattern pairs

Pattern pair Obj dist MDS

P to M/H 4.03 0.638

P to L 1.30 0.206

P to M 3.04 0.481

P to H 4.99 0.789

MH to MH 5.44 0.861

MH to L 4.19 0.663

MH to M 4.82 0.763

MH to H 6.12 0.968

L to L 1.82 0.289

L to M 3.24 0.513

L to H 5.09 0.805

M to M 4.12 0.652

M to H 5.65 0.894

H to H 6.63 1.049

Note: Obj dist= objective distance. MDS (multidimensional

scaling) values in italics were estimated from the linear

relationship between MDS and objective distance, where

P= prototype, L, M, and H refer to low, medium, and

high distortions from the prototype, respectively, and MH

refers to patterns defined as medium–high pattern distortions.

2 Statistical outcomes were not altered by the removal of these subjects.
3 The mean distortion of a pattern is generated by a program that takes as a value its distortion level—for example, 1.20 for a low-

level distortion, generating a potential infinite number of patterns at that value. The distortion level of any pattern from its prototype is

computed as the mean of the Euclidean distances of each point from the corresponding value of its prototype. The resulting sample of

stimuli at a particular distortion level has a mean value that typically differs slightly from this mean. For the present study, the specific

mean values are shown in Table 1.
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regarding informed consent and procedure for
completing the experiment. The experiment was
divided into two phases, a learning phase and a
transfer phase. In the learning phase, participants
were told that they would see a number of patterns
that belonged to three groups, A, B, and C, and
that their task was to learn which patterns belonged
to the three groups.

Participants in the array-different-category con-
dition (array-DC) were presented with three
stimuli at once. These stimuli were arranged in an
evenly spaced horizontal row, centred at a height
284 pixels below the top of the screen. The patterns
were evenly spaced across the screen such that there
were 31 pixels between each image and its nearest
neighbour and, for the left and rightmost patterns,
the sides of the screen. Each of the stimuli on
screen belonged to a different group, such that
there was always one stimulus from each category
in any given array. Participants were made aware
of this fact during their instructions and were
instructed to observe all three of the patterns
before making their category judgements.
Presentation of the stimuli was randomized such
that exemplars from each category could appear in
any of the three screen positions. The assignment
of category names (A, B, C) to the three different
prototypes was randomized for each subject.
Participants made their responses using the key-
board, responding from left to right. After all three
responses, the correct responses were displayed
below their corresponding patterns. This feedback
was displayed for 3 s, after which the next set of
stimuli was displayed. For the initial two blocks of
training, each array was available for 7.5 s regardless
of how rapidly the participant responded.4 For
Blocks 3–6, presentation time was reduced to 6 s.

Participants in the array-same-category con-
dition (array-SC) were also shown three patterns
at once, and these stimuli were again arranged in
an evenly spaced horizontal row, centred at a
height 284 pixels below the top of the screen.
Similarly, the patterns were again evenly spaced
across the screen such that there were 31 pixels
between each image and its nearest neighbour
and, for the left and rightmost patterns, the sides
of the screen. In this condition, however, all three
of the stimuli belonged to the same category.
Participants were informed of this fact in their
instructions, and they were only required to give
one response. They were again encouraged to
examine each of the patterns before responding.
After their response, the correct response was dis-
played beneath the centre stimuli for 3 s, after
which the next set of stimuli was displayed. As
was the case for the array-DC condition, the
array was shown for 7.5 s on Blocks 1–2 and was
reduced to 6 s on Blocks 3–6, resulting in an
average of 2.5 and 2.0 s per pattern, respectively,
in the array conditions. An example of a same-cat-
egory array and a different-category array is shown
in Figure 1.

Participants in the sequential (SEQ) condition
were shown only one pattern at a time. This
pattern was centred on the screen and displayed
at the same size and resolution as the patterns in
the simultaneous conditions. Participants made
their response to the pattern, after which the
correct response was displayed below the pattern
for one second. Each array was presented for
study for 2.5 s for Blocks 1 and 2 and for 2 s on
Blocks 3–6. As a consequence, each pattern,
regardless of condition, was shown for 2.5 s on
Blocks 1 and 2 and for 2 s on Blocks 3–6.

4 In an initial pilot experiment, we discovered that subjects in the array-same condition often responded rapidly in the learning

phase, thereby diminishing later performance on the recognition test. For example, in the pilot study, the mean latency in learning

was about 2 s for the sequential and array-different-category conditions and less than one second in the array-same-category conditions,

a disparity that was manifested across all training blocks. As a result, we opted to force all subjects to have available roughly equal pro-

cessing time for each stimulus by keeping the display visible for a time that was comparable across conditions. Whether level of proces-

sing in the conditions was equated by this manipulation is unclear (a concern mentioned by one of the reviewers), since we cannot

assume that objective time per pattern was equal to subjective processing time per pattern, although any disadvantage of our manipu-

lation should have occurred in the same-category array condition. An additional disadvantage of equating mean time per stimulus in

learning is that response latencies in learning are rendered less meaningful since responses probably include a proportion of completed

but delayed responding. As a result, latencies are not reported in the present study.
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The transfer phase was the same for all three
conditions and consisted of the sequential display
of all 27 learning patterns, the 45 additional pat-
terns, the 15 junk patterns, and the three prototype
patterns, for a total of 90 patterns. Participants were
instructed to make both a recognition judgement
and a category judgement for each pattern. The
pattern was displayed as in the sequential condition
along with instructions above it. First, “Is this
pattern old?” and, after the initial response of yes
or no, indicated by Y or N on the keyboard, the
instructions “categorize this pattern” appeared
above the pattern. After the participants’ response,
the next pattern was shown, again with the recog-
nition instructions. No feedback was given during
the transfer phase.

Results

Learning data
Figure 2 shows mean accuracy on each learning
block, shown separately for each condition. A
repeated measures analysis of variance (ANOVA)
revealed a main effect of learning blocks, F(5,

305)= 80.68, MSE= 12.01, η2= .569, p, .001,
and condition, F(2, 61)= 14.76, MSE= 58.20,
η2= .326, both ps, .001. Generally, performance
improved by about 40% from the initial to the
terminal block, with performance on the two
array presentations (same category and different
category) exceeding performance on the sequential
condition (p, .05, Bonferroni).5 The Block ×
Condition interaction was not significant, p. .20.

Transfer: Classification
Figure 3 shows the mean classification accuracy on
the transfer test for each of the conditions. Overall,
classification was highest on the category prototype
(.833), followed by new–low (.802), old training pat-
terns (.719), and new–medium (.681), and lowest
for new–high distortions (.481). An analysis on the
new transfer patterns revealed a significant effect of
distortion level, F(2, 122)= 33.23, MSE= 284.99,

Figure 1. Examples of stimulus arrays used in array learning. Top

row shows patterns from the same category; bottom row shows

patterns from different categories.

Figure 2. Mean proportion correct learning across blocks as a

function of condition (SEQ= sequential; A-SC= array-same-

category; A-DC= array-different-category).

5 Although not the focus of the present study, we anticipated that the array-same-category patterns would have an advantage early

in learning. Differences in learning rates, however, are compromised by potentially different guessing rates and strategies for the three

conditions. Nonetheless, an analysis of the initial block revealed that the array-same-category condition resulted in a significantly

higher proportion of correct responses than the sequential condition (p, .05) and a marginally significant advantage compared to

the array-different-category condition (p, .07). On an individual level, over 70% of subjects in the array-same-category condition cor-

rectly identified over 50% of the category members on the initial trial versus only 36% of the subjects in the array-different-category

condition.
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η2= .353, p, .001, and a significant Condition×
Distortion level interaction, F(4, 122)= 2.63,
MSE= 291.77, η2= .079, p, .05; the main effect
of condition was not significant, p. .10. The inter-
action was due to the substantial 10–14% difference
in classification favouring the array conditions versus
sequential condition on the low-level distortions
(Bonferroni, p, .05 in each case), the 11% advan-
tage of the array-different-category condition com-
pared to the sequential and array-same-category
condition on the medium-level distortions
(Bonferroni, p, .05), and the nonsignificant differ-
ence when patterns were high-level distortions.

Pairwise test revealed that classification accuracy
for pattern types was similar for the three con-
ditions, generally revealed as prototype= low.
old≥medium. high (p, .05 contrasts). The
exceptions were low= old in the sequential con-
dition and old.medium in the array-same-cat-
egory condition.

Correct classification of the unrelated patterns
into the junk category was moderately accurate
and did not differ among the conditions, p. .20,
SEQ= .530, array-SC= .629, array-DC= .567.
A compositional analysis (Homa et al., 1987)
was performed on each condition. In this
analysis, purity measures what proportion of items
assigned to a category is correct.6 This analysis
revealed that purity was highest for the array-DC
condition (.730), intermediate for the array-SC
condition (.700), and lowest for the SEQ condition
(.667).

Transfer: Recognition
Figure 4 shows the likelihood that the transfer
items were called “old”, shown separately for each
condition. The main effect of item was significant,
F(4, 244)= 114.81, MSE= 393.758, η2= .653,

Figure 4. Mean likelihood of calling a pattern old, as a function of

pattern type (old, new–low, new–medium, new–high, prototype;

proto= prototype; med=medium) and condition (SEQ=
sequential; A-SC= array-same-category; A-DC= array-

different-category).

Figure 3. Mean classification accuracy of transfer patterns (old,

new–low, new–medium, new–high, prototype; proto= prototype;

L= low; M=medium; H= high) as a function of learning

condition (SEQ= sequential; A-SC= array-same-category;

A-DC= array-different-category).

6 Purity differs from the traditional hit rate by adjusting performance to reflect how often incorrect patterns, such as random pat-

terns and patterns from the other categories, are also assigned to a category. For example, if 10 out of 15 patterns are correctly classified

into a category, the hit rate would be .667. However, if this subject also erroneously included 5 patterns from the other learned cat-

egories as well as 10 random patterns, then only 10 of the 30 patterns assigned to that category would be correct. In this case, the

purity value for that category would be .333. Additional details of this type of analysis are contained in Homa et al. (1987).
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p, .001, as was the Condition× Item interaction,
F(8, 244)= 2.25, MSE= 393.758, η2= .069.
However, the main effect of condition was not,
p. .20. Overall, the likelihood of calling an item
“old” was highest for the category prototype
(.752) and new–low distortions (.739), lowest for
the new–high distortions (.273), and intermediate
for the old training patterns (.623). The
Condition× Item interaction was due to similar
likelihoods of calling the various items old except
for the category prototype; the sequential and
array-SC conditions had (false) recognition rates
for the category prototypes of .794 and .825,
respectively; this rate was significantly reduced for
the array-DC (.636). Subsequent Bonferroni tests
revealed that this reduced level of false alarming
to the category prototype was significantly lower
for the array-DC condition, p, .05.

Pairwise test revealed that the likelihoodof calling
a pattern old mirrored that of the classification
results: Prototype= low≥ old≥medium. high
(p, .05 contrasts). The exceptions were that
low= old in the sequential condition, and old=
medium in the array-same-category condition.

Modelling of the transfer data
Formal modelling was initially applied to the classi-
fication results. The best fitting parameters were
then maintained to fit the recognition results.

To model the transfer data in the classification
phase, a measure of similarity is needed.
Fortunately, we already have a fairly complete set
of objective pattern distances and similarity
relationships for these patterns at various levels of
distortion (Homa et al., 2008). In brief, pattern
pairs were rated on a 9-point scale for similarity,
where the total pool of patterns contained the

category prototype and three examples from each
distortion level for each category. These ratings
were scaled in dimensions 1–6.

Table 1 shows the objective and multidimen-
sional scaling (MDS) distances for the three-
dimensional solutions for the critical pattern com-
parisons that were used in all modelling.7

Initially, two general models were considered, a
version of the generalized context model
(Nosofsky, 1988; Nosofsky & Johansen, 2000)
and a prototype model (Smith & Minda, 2002).
In both models, the similarity between any two pat-
terns is an exponential function of MDS distance.
Let the multidimensional distance between any
two patterns, i and j, be noted as dij—that is:

dij =
∑

(xik − xjk)2
{ }1/2

(1)

where, xik and xjk are the values of patterns i and j
on dimension k. Typically, the similarity between
patterns i and j, sij, is an exponential function of
their separation in multidimensional space—that
is, sij, the similarity between these patterns is:

Sij = exp(−cdij ) (2)

The parameter c typically functions as a scaling
(sensitivity) parameter (e.g., Nosofsky &
Johansen, 2000) and determines the degree of dis-
criminability among the patterns, with larger values
of c reflecting enhanced discriminability.

The classification of a pattern into any of three
categories, A, B, or C, is determined by computing
the summed similarity of pattern i to all members
of the categories A, B, and C and then determining
the ratio of evidence for each category—for

7 Two cautionary notes are warranted. First, the multidimensional distances were derived from the same prototypes and patterns of

the same distortion levels as those applied here. However, the particular patterns used in scaling were different from those used in our

learning and transfer. Although some variation in multidimensional distances are inevitable when different patterns of the same dis-

tortion level are used, we have found that most patterns cluster tightly around the distances reported here. Second, the model fits did

require one estimate not provided by the multidimensional scaling—the distance of a medium–high pattern to the low, medium, and

high distortions. The estimated distances were based on the roughly linear relationship between objective within-category distance and

multidimensional distance in three dimensions. As is clear from Table 2, the estimated values do fall within the contrasts provided by

multidimensional scaling for the remaining patterns. That is, the distance of a medium–high to low, medium, and high distortions is

slightly greater than those distances obtained for medium-level distortions to these contrasts and slightly less than those obtained for

the high-level distortions. Neither of these concerns should bias the model fits explored here.
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example, for classification of pattern i into Category
A, the formula is:

P(RA|Si) =

∑
Sij

jeCA∑
Sik

jeCA
+
∑

Sik

jeCB
+
∑

Sik

jeCC

(3)

In a similar manner (e.g., Homa et al., 2008; Smith
& Minda, 1998), the classification evidence due to
a prototype influence is determined by the overall
similarity of pattern i to each of the three proto-
types, PA, PB, and PC—that is, for assignment of
pattern i into Category A,

P(RA|Si) =SiPA/ SiPA + SiPB + SiPC( ) (4)

We again assume that similarity of pattern i to pro-
totype A, B, or C is exponentially related to the
multidimensional distance between these two—
that is, for i є A,

SiPA = exp −gdiPA
( )

(5)

The only additional assumption is that the sensi-
tivity parameter for the category prototype, g, is

allowed to take on a value different from the sensi-
tivity parameter, c, for exemplar similarity—that is,
c and g are free and independent parameters. As was
the case with parameter c, increased values of g
should reflect enhanced discriminability among
the training prototypes.

Figure 5 shows the best least square fits for the
transfer results on the classification test. For each
comparison, the best fitting exemplar model is
shown in the left panel, the best fitting prototype
model is shown in the right panel, and the actual
results are shown in the middle panel.8

Mean deviations between obtained and pre-
dicted values favoured the prototype fits for each
condition: The upper portion of Table 2 shows
the mean absolute deviation between observed
and predicted classification performance, the mag-
nitude of the gradient across new distortion level,
and the magnitude of the gradient when the proto-
type is included in the gradient. For the sequential,
array-same-category, and array-different-category
conditions, the deviation between observed and
predicted values was .046, .083, and .072, respect-
ively, for the exemplar model; for the prototype
model, the corresponding values were .039, .069,
and .055, respectively. More importantly, the
exemplar-based model cannot adequately predict

Figure 5. Best fitting classification results for exemplar (left panel) and prototype (right panel) models for each condition (SEQ= sequential;

A-SC= array-same-category; A-DC= array-different-category); results are shown in middle panel; proto= prototype.

8 Fits were based on condition means for each item type.
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the shape of the transfer results. In particular, the
exemplar model fails for three reasons: (a) It under-
predicts the magnitude of the generalization gradi-
ent across pattern distortion level; (b) it predicts
that new patterns cannot be classified better than
the old instances; and (c) it underpredicts perform-
ance on the category prototype. Some of these con-
cerns obtained for exemplar-based models of
classification are not new (Homa et al., 2008;
Homa, Sterling, & Trepel, 1981), but they are
especially visible in the present study. The reason
for this shortcoming is that the old training pat-
terns—themselves moderately high-level distortions
of the category prototype—are not very similar either
to other training patterns or to new patterns at any
level of distortion of the category prototype. In con-
trast, the new patterns of low, medium, and high
distortion have a strong (and increasingly reduced)
similarity relationship to the category prototype.
Finally, parameters assumed to reflect discriminabil-
ity following training (c for exemplar, g for proto-
type) were greatest in the array-different-category
condition and smallest for the sequential condition,
an outcome consistent with the hypothesis that

category distinctions should be enhanced by array-
different-category training.

Exemplar-based models of classification often-
times invoke an additional parameter that assesses
whether judgements are made probabilistically or
deterministically (Nosofsky & Johansen, 2000).
The additional of this parameter (γ) did little to
improve fits and does not alter the main
conclusions.9

Modelling of recognition
Modelling of the recognition results maintained
the parameters obtained for classification fits to
the prototype and exemplar model. The sole differ-
ence was the estimation of a recognition threshold
parameter, optimized for the both exemplar and
prototype models. The simplest assumption is
that the subject calls a pattern old if its summed
similarity to all patterns exceeds some criterion
(Nosofsky & Zaki, 1998). Specifically, for the
exemplar model, the probability that pattern i is
called “old” is determined by summing the simi-
larity of this pattern to all study items in

Table 2. Exemplar and prototype model fits to classification and recognition results, as a function of training conditions

Transfer Contrasts

Sequential Array-SC Array-DC

Obs Exem Proto Obs Exem Proto Obs Exem Proto

Classification Mean abs dev — .046 .039 — .083 .069 — .072 .055

Gradient: low–high .232 .114 .159 .368 .121 .167 .364 .128 .175

Gradient: proto–high .302 .124 .205 .384 .130 .213 .370 .136 .219

Old–new low –.033 –.005 –.115 –.111 –.002 –.120 –.135 +.005 –.123

Exemplar c 1.659 1.812 2.076

Prototype g 1.213 1.338 1.553

Recognition Mean abs dev — .126 .119 — .138 .130 — .091 .096

Gradient: low–high .445 .081 .114 .527 .090 .128 .424 .112 .164

Gradient: proto–high .531 .088 .157 .558 .098 .176 .347 .122 .225

Old–new low –.101 +.006 –.086 –.159 –.002 –.097 –.087 +.006 –.125

Exemplar ke 2.903 2.164 2.131

Prototype kp 0.668 0.526 0.562

Note: Abs dev= absolute deviation; proto= prototype; obs= observed; exem= exemplar; SC= same category; DC= different

category.

9 Addition of a γ parameter, used to assess whether the subject responded in a deterministic or probabilistic manner, did little to

improve the fits, decreasing the mean absolute deviations by .002, .004, and .010 for the sequential, array-SC, and array-DC con-

ditions, respectively. More critically, the addition of this parameter did little to improve the underprediction of the gradient across dis-

tortion level or the underprediction of the category prototype.
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Categories A, B, and C and then noting whether it
exceeds some criterion, k—for example:

P “old” | Si
( ) =

∑
Sij∑

Sij + ke
( ) (6)

where ke is the recognition threshold for the exem-
plar model.

A similar expression is used for the prototype
model, except that the summed similarity is to all
three prototypes, and the recognition threshold is kp.

Figure 6 mirrors the display shown in Figure 5,
except the probability of calling a pattern old is
shown. The least square fit of the exemplar model
is shown in the left panel, the prototype model is
shown in the right panel, and the actual results
are shown in the middle. The bottom portion of
Table 2 shows selected contrasts for each model
as well as the estimated criterion parameters.
Although deviations between observed and pre-
dicted were greater than those for the classification
results (averaging about .10 for each model), the
exemplar model again fared worse in predicting
the shape of the generalization gradient and the
patterning of oldness proportions for old, prototype
and new, low distortions. In particular, the exem-
plar model again failed to predict the steep gradient

between the prototype and high distortions.
Overall, the exemplar model predicted only 23%
of the actual recognition gradient whereas the
prototype model predicted 42% of this gradient.

Discussion

The present study introduced a novel modification
to the typical category paradigm by presenting mul-
tiple patterns in an array format in learning. The
rationale was that commonalities within a category
or distinctions among categories might be high-
lighted, depending upon how the array was struc-
tured, compared to the standard paradigm of
singly presenting patterns. The results provided
mild support for these hypotheses—learning on
the initial block was significantly speeded by array
training when the patterns belonged to the same
category compared to the sequential presentation
of patterns and marginally superior to array training
that contained patterns from different categories.
In contrast, transfer performance favoured array
training again, but when the training patterns
were drawn from different categories. This latter
result suggests that category distinctiveness may
be more important than within-category common-
alities, at least given the constraints of the present
experiment. What seems likely is that both factors

Figure 6. Best fitting recognition results for exemplar (left panel) and prototype (right panel) models for each condition (SEQ= sequential;

A-SC= array-same-category; A-DC= array-different-category); results are shown in middle panel; proto= prototype.

THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2013, 00 (0) 11

CATEGORIZATION AND ARRAY TRAINING

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 L

os
 A

ng
el

es
 (

U
C

L
A

)]
 a

t 2
0:

02
 2

9 
O

ct
ob

er
 2

01
3 



contribute to categorical knowledge, with the
caveat that within-category may be more readily
available early in learning. Taken together,
support was found for both category distinctiveness
training (Gibson & Gibson, 1955) and identifi-
cation of components common to a category (e.g.,
Posner & Keele, 1968, 1970). The results of the
present study also lend support to previous research
that argued for the importance of category shaping
variables to category knowledge, with category size
selectively influencing the identification of category
commonalities and number of categories to be
learned enhancing knowledge of category distinc-
tiveness (Homa & Chambliss, 1975).

We are currently exploring whether array training
may afford an optimal way to teach expertise. Tanaka,
Curran, and Sheinberg (2005) argued that expertise
in the identification of wading birds and owls might
be accomplished via extensive training at a particular
level of the taxonomy. A reasonable expectation,
given the results of the present study, is that array
training with examples from the same category may
be optimal for the isolation of common properties
needed to make judgements higher within the taxon-
omy—for example, basic-level category judgements.
However, learning of finer grained distinctions at
the subordinate or even deeper levels may be profit-
ably gained via array training with stimuli belonging
to different categories. This would be consonant
with the finding that learning is speeded by array
training with members from the same category, but
later transfer could profit more by training with
members from different categories.

Finally, formal modelling generally supported a
prototype model over an exemplar model of classi-
fication. The major shortcoming of the exemplar
model (e.g., Nosofsky, 1988; Shin & Nosofsky,
1992) was the failure to adequately predict three
results: (a) the steep gradient across similarity to
the category prototype obtained in all three con-
ditions for both classification and recognition; (b)
the substantially higher classification of new low-
level distortions than the training patterns; and
(c) the higher classification accuracy and higher
false-alarm rates for the category prototype in
each condition than the training patterns.
Generally, the prototype model better fitted each

of these concerns, although even the prototype
model slightly underpredicted the magnitude of
the gradient across pattern distortion level. More
important, the prototype model better fitted the
ordinal relationship obtained for the classification
and recognition of the old, new, and prototype pat-
terns than did the exemplar model (Wills &
Pathos, 2012). In particular, the exemplar model
predicted similar classification accuracy and
oldness ratings for the old, prototype, and low-
level distortions; the prototype model did not.
The results clearly reflected the latter outcome.

The reason for the poor exemplar fit to the
classification is probably due to two factors: The
training patterns were moderately high-level distor-
tions from the category prototype and had, as a
consequence, a weak similarity relationship to
each other; and these training patterns had a
minimal and fairly uniform similarity relationship
to the transfer patterns, regardless of their distor-
tion level to the category prototype. In contrast,
the new transfer patterns had a lawful and substan-
tial similarity relationship to the category prototype.
This relationship is readily seen in Figure 7, which

Figure 7. Mean MDS (multidimensional scaling) distances for the

training patterns and the category prototype to transfer patterns of

different distortion level to the category prototype; proto= prototype.
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shows the MDS distances between training pat-
terns or the prototype to the old patterns and new
patterns at all levels of distortion.

These particular properties, critical to the
present study, cannot occur in most experiments
that employ binary patterns that vary along a
small set of dimensions and require classification
into two categories. For example, the heavily
researched 5/4 paradigm introduced by Medin
and Schaffer (1978) and the source of extensive
investigation by later researchers (e.g., Minda &
Smith, 2002; Zaki, Nosofsky, Stanton, & Cohen,
2003) can generate a stimulus population of 16
different stimuli. Because of the limited stimulus
pool, it is impossible to generate training patterns
that are high-level distortions from the category
prototype that are also uniformly distant (or
nearly so) from novel patterns at manipulated
levels of similarity from the category prototype. In
fact, we know of no study using binary-valued pat-
terns that fit the properties considered critical here.

A limitation of the modelling fits in the present
study should be mentioned. Fine-grained model-
ling of whether array training sharpened or broad-
ened category boundaries, as might be revealed by
changes in dimensional weights, cannot be made.
This analysis is precluded with the stimuli used in
the present study, at least at the present time,
because the functional dimensions of ill-defined
patterns are obscure and not readily identifiable
(Neisser, 1967). The type of simple modelling pro-
vided here is possible because pairwise Euclidean
distances in N-dimensional space among ill-
defined patterns are readily obtained and unaffected
by dimensional rotation. In addition, pairwise dis-
tances are minimally changed, and the ordinal
rank-ordering of distances for each pattern pair
are largely unaffected by the number of scaled
dimensions in anMDS space. However, the identi-
fication of critical dimensions, a preliminary
requirement for analyses that explore dimensional
weighting (perhaps based on the array manipula-
tions used here) is considerably more difficult.
Without an objective way to identify the dimen-
sions (e.g., Nosofsky, 1987), each rotation within
a dimensional solution would produce a different
set of weights. Consequently, we cannot dismiss

the possibility that exemplar-based models of
classification that use dimensional weighting for
same- and different-category array conditions
might better capture the steep gradients across
pattern distortion levels obtained in the present
study.

Nonetheless, the overriding advantage of using
the ill-defined patterns used in the present study
is that they permit manipulation of pairwise simi-
larities not possible with simpler stimuli composed
of well-defined dimensions. More critically, the
critical structural properties explored here—train-
ing on moderately high-level distortions of a cat-
egory that are neither very similar to each other
nor to patterns at low, medium, and high distor-
tions of the category—are manifested in many if
not most natural categories. Young and Hamer
(1994) provide numerous examples of multidimen-
sional scaling of natural categories. It is a simple
matter to identify category members at various dis-
tances from the centroid (prototype) while main-
taining roughly equidistance relations to other
moderately high-distortion (less typical) members.
For example, in a multidimensional space, robin,
eagle and swan are increasingly distant from the
centroid of the bird category, and these members
are approximately equidistant to other high distor-
tions like penguin and ostrich. Similarly, dog, wolf,
and bear are increasingly distant from the centroid
of four-footed animals and, again, roughly equidi-
stant to other high distortions like zebra and
mouse (Homa & Silver, 1976). To investigate
exemplar and prototype models, it is necessary to
evaluate similarity relationships that are critical to
these theories, an alternative often obviated by the
use of categories composed of binary-valued
stimuli that are assigned to either of two categories.

In conclusion, the present study demonstrates
that array training can provide useful insights into
the role of common and distinctive properties
that critically shape our concepts. One clear advan-
tage of array presentation is that memory demands
are reduced compared to sequential presentation,
affording the opportunity to visually search for
commonalities or category distinctions, depending
on how the array is structured. Should this pro-
cedure provide a method for the optimization of
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learning and retention of concepts, there remains a
host of variables that might be profitably investi-
gated, including array size, time of inspection,
quality of the exemplars, and number of categories
to be learned. These variables were held constant in
the present study. These manipulations might also
reveal whether the various models of classification
currently popular might best fit different segments
of the resulting data space shaped by these
manipulations.
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CATEGORIZATION AND ARRAY TRAINING
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